The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X^2 1 1 1 1 1 1 1 1 X X X 0 X 0 X^2+X 0 X^2+X 0 X^2+X X^2+X 0 X X^2 0 X^2+X X^2+X X^2 X 0 X^2+X X^2 X^2+X 0 X^2 X 0 X^2+X 0 X^2 X^2+X X X^2 X X^2 0 0 X^2 X^2 0 0 X^2 X^2+X X^2+X X^2+X X^2+X 0 0 X^2 0 0 0 X^2 0 X^2 0 X^2 X^2 0 X^2 0 X^2 X^2 X^2 X^2 0 0 0 X^2 X^2 0 0 X^2 X^2 X^2 X^2 0 0 0 0 0 0 0 X^2 X^2 0 0 0 X^2 X^2 0 0 0 X^2 0 0 0 0 0 0 0 0 X^2 X^2 X^2 X^2 0 0 X^2 0 X^2 X^2 X^2 X^2 X^2 0 X^2 X^2 X^2 0 X^2 X^2 0 0 X^2 X^2 0 X^2 X^2 X^2 0 0 X^2 0 0 0 0 0 X^2 0 X^2 X^2 X^2 0 0 0 0 0 X^2 X^2 0 X^2 X^2 X^2 X^2 X^2 0 X^2 X^2 X^2 X^2 0 0 X^2 0 0 0 X^2 0 0 X^2 0 X^2 X^2 0 0 0 0 0 0 0 0 0 X^2 0 X^2 X^2 X^2 X^2 X^2 X^2 0 X^2 X^2 0 X^2 X^2 X^2 0 0 0 0 X^2 0 0 X^2 X^2 0 0 X^2 0 X^2 0 X^2 0 0 X^2 X^2 0 0 X^2 X^2 generates a code of length 44 over Z2[X]/(X^3) who´s minimum homogenous weight is 40. Homogenous weight enumerator: w(x)=1x^0+67x^40+106x^42+111x^44+128x^45+36x^46+43x^48+18x^50+1x^52+1x^80 The gray image is a linear code over GF(2) with n=176, k=9 and d=80. This code was found by Heurico 1.16 in 0.0494 seconds.